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Relationship between muscle activation 
and sagittal knee joint biomechanics 
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Abstract 

Background  Patellofemoral pain syndrome (PFPS) is one of the most common conditions affecting the knee joint, 
yet its pathomechanics remain unclear. The aim of this study was to investigate changes in muscle activation and gait 
patterns and to analyze the relationship between muscle activation and kinetic gait patterns in patients with PFPS.

Methods  This study included 31 patients with PFPS and 28 healthy volunteers without any symptoms. The sagittal 
plane motion of the knee joint, representing primary movement of the knee joint, was evaluated to identify changes 
in gait patterns. Electromyography (EMG) was used to measure muscle activation of vastus medialis (VM), vastus lat‑
eralis (VL), semitendinosus (ST), and gastrocnemius (GCM) muscles during gait analysis. Biomechanical features were 
analyzed during the three phases of the gait cycle; weight acceptance (WA), single limb support (SLS), and swing limb 
advancement (SLA) (0 ~ 12%, 13 ~ 50%, and 51 ~ 100% of the gait cycle, respectively).

Results  The average knee extension moment (KEM) during WA was lower in the patient group and no significant dif‑
ferences were observed in the knee flexion angle (KFA). With respect to muscle activation, the patient group showed 
significantly higher muscle activation of the ST muscle in all phases. As the absolute value of the moment increased, 
the activation of the VM, VL, and ST muscles increased more rapidly in the patient group, especially when KEM 
was under −1% body weight × height (Bw × Ht) or over 5% Bw × Ht.

Conclusions  Patients with PFPS exhibit elevated muscle activation, particularly in response to changes in the knee 
extension moment, which is likely a compensatory mechanism to manage knee joint loading during gait. These 
results highlight altered neuromuscular adaptations in PFPS, suggesting targeted therapies may help improve func‑
tional outcomes.

Level of evidence III, cross-sectional study
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Introduction
Patellofemoral pain syndrome (PFPS) is characterized by 
anterior knee pain and is one of the most common condi-
tions affecting the knee joint [1]. Despite its high preva-
lence [2], the biomechanics and pathomechanics of PFPS 
remain unclear, which limits effective management strat-
egies [3–5].

Modern gait analysis provides valuable biomechani-
cal and spatiotemporal data, offering insights into PFPS 
beyond the limitations of conventional anatomical tests 
[6]. Electromyography (EMG) is commonly used to study 
neuromuscular conditions and has been applied to PFPS 
research [7], focusing on parameters such as the vastus 
medialis oblique (VMO)/vastus lateralis (VL) activa-
tion ratio, muscle activation onset [8], reflex response 
time [9], and medium frequency band (45–96 Hz) [10] to 
investigate distinct EMG patterns in patients with PFPS. 
However, none of these studies have explored how dif-
ferences in muscle activation patterns correlate with the 
characteristic biomechanics of PFPS.

It is generally accepted that the pathology of patel-
lofemoral pain is related to elevated patellofemoral joint 
(PFJ) reaction forces [11–13], which is positively cor-
related with the knee extension moment (KEM) in the 
sagittal plane [11, 14, 15]. Previous studies have reported 
that patients with PFPS showed reduced peak KEM 
during various activities, including level and stair walk-
ing [16–18]. Further, other studies reported an increase 
in KEM after taping or rehabilitation to reduce pain in 
patients with PFPS [19, 20]. On the basis of these results, 
it has been suggested that subjects with PFPS reduce 
KEM to decrease pain and PFJ reaction forces. However, 
the mechanism of how patients reduce KEM remains 
unclear. A recent study has shown that the central nerv-
ous system (CNS) modulates muscle activation to reduce 
the load within the joints in a rat model [21], leading to 
our hypothesis that muscle activation changes to reduce 
the KEM in patients with PFPS.

This study analyzed the gait and EMG data of subjects 
with and without PFPS. We hypothesized that muscle 
activation patterns change to reduce joint loading and 
pain in patients with PFPS. The purpose of this study was 
to investigate the relationship between muscle activation 
patterns and sagittal knee joint biomechanics, specifically 
focusing on how changes in KEM influence muscle acti-
vation during different phases of the gait cycle in patients 
with PFPS.

Methods
Study population
This prospective cohort study was approved by the 
Institutional Review Board (IRB no. H-1908-011-1052) 

and was performed in accordance with relevant guide-
lines and regulations. Written informed consent was 
obtained from all participants. We included patients on 
the basis of the following criteria: (1) patellofemoral pain 
(visual analog scale (VAS) ≥ 4) lasting at least 6  weeks; 
(2) aggravating pain with knee flexion, climbing stairs, 
or squatting; and (3) reporting pain during the patellar 
compression test. A total of 12 subjects were excluded 
on the basis of the following criteria: (1) age > 35  years; 
(2) arthritis on X-ray (Kellgren-Lawrence (KL) grade ≥ 2 
or patellofemoral joint space ≤ 3  mm); (3) trauma; (4) 
any prior knee surgery; (5) marked gait impairment that 
failed gait analysis; (6) any evidence of inflammatory 
arthritis; and (7) instability or restriction of movement 
of the knee joint on physical examination [22–24]. For 
the control group, participants were recruited through 
advertisements at the hospital. A total of 31 patients 
and 28 healthy volunteers were included in this study. 
In the PFPS group, symptom duration ranged from 6 
to 60  months, with a mean duration of 23.16  months 
(standard deviation 19.25 months). Among the patients, 
41.94% had bilateral symptoms, while 29.03% had symp-
toms on the left or right side. Table 1 summarizes partici-
pants’ demographic characteristics and spatiotemporal 
gait features.

Data collection
All gait analysis data, including kinetic, kinematic, and 
spatiotemporal, were collected at the Human Motion 
Analysis Laboratory. The subjects were asked to walk 
for a few minutes to get used to the setting. After warm-
ing up, an operator with 20  years of experience placed 
reflective markers on the subjects according to the 
Helen Hayes marker set. The subjects were asked to walk 
along a 9-m track. Motion data were collected using 12 

Table 1  Population characteristics and spatiotemporal gait data 
of study subjects

Patients with PFPS 
(n = 31) Mean (SD)

Control group 
(n = 28) Mean 
(SD)

P-value

Sex (male/female) 18/13 20/8 0.284

Age (years) 28.3 (9.1) 23.3 (1.2) 0.004

Height (cm) 168. 1 (8.2) 171.5 (8.3) 0.116

Weight (kg) 64.0 (12.4) 66.0 (9.5) 0.502

Body mass index 
(kg/m2)

22.5 (3.0) 22.4 (2.2) 0.810

Cadence (steps/min) 113.1 (8.1) 114.9 (6.7) 0.372

Gait speed (cm/s) 118.0 (11.8) 128.2 (12.8) 0.002

Stride length (cm) 124.6 (9.5) 133.6 (10.1) 0.001

Step width (cm) 11.6 (2.6) 12.5 (2.9) 0.238
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charge-coupled device cameras with a three-dimensional 
optical motion capture system (Motion Analysis Corp., 
Santa Rosa, CA, USA) at a sampling frequency of 120 Hz. 
The kinetic data were obtained using two force plates 
embedded in the floor and normalized to the weight and 
height of individuals (% Bw × Ht). The kinetic and kin-
ematic data for each joint were averaged after five or six 
trials of the 9-m walk and then used as study data.

A total of four EMG channels were measured simul-
taneously along with gait data: vastus medialis (VM), 
VL, semitendinosus (ST), and gastrocnemius (GCM). 
The measured EMG signal was bandpass-filtered with 
a frequency of 20–350 Hz. The filtered signal was recti-
fied, followed by smoothing using the root mean square 
method over 200 points. The amplitude of smoothed sig-
nal was normalized relative to the maximum voluntary 
contraction (MVC). The MVC of each muscle was meas-
ured according to previous studies [25–27]. The temporal 
axis of both gait and EMG data was normalized from 0% 
to 100%.

Statistical analysis
All data extraction and analyses were performed using 
MATLAB 2018b (MathWorks, Massachusetts) and 
Microsoft Excel 2010 (Microsoft, Redmond). We ana-
lyzed only one leg from each individual to remove sta-
tistical dependence caused by multiple observation of 
single individuals [28]. Data from the leg with the lesion 
was analyzed for patients with unilateral PFPS, and data 
from the right leg was analyzed for patients with bilat-
eral PFPS and the control groups. The KFA and KEM 
were analyzed in detail for each phase of the gait cycle: 
weight acceptance (WA), single limb support (SLS), and 
swing limb advancement (SLA). The average, maximum, 
and minimum values during each cycle were observed 
to compare the KFA and KEM between patients and the 
control group. To observe changes in EMG relative to 
the KEM, KEM values were sorted in increasing order. 
All four EMG channels were also sorted using the same 
index of the KEM. The KEM values were rounded to the 
nearest unit digit, and the corresponding EMG values 
with the same unit digit index of KEM were averaged. 
The Student’s t-test was performed to compare EMG 
values between patients and the control group with the 
same KEM level. The sample size was derived as follows: 
in the case of knee extension moment, a difference of 15% 
is usually assumed to be meaningful, and according to 
previously reported studies, the peak KEM value follows 
a distribution of 3.2 ± 0.6 (% Bw × Ht) [29, 30]. When 
the number of study subjects is calculated with an alpha 
error of 0.05 and a beta error of 0.2, each group requires 
26 subjects. For all analyses, p < 0.01 was considered to 
indicate statistical significance.

Results
The mean and maximum values of KEM during WA 
were significantly smaller in the patient group (Fig. 1a–b, 
Table 2).

During SLS, the minimum value was significantly 
higher in the patient group, and the maximum value was 
significantly lower. During SLA, the minimum value was 
significantly higher in the patient group. However, there 
were no significant differences between the control and 
patient groups for KFA.

The average muscle activation of the ST muscle was 
significantly higher throughout the gait cycle in the 
patient group (Fig. 1c–f, Table 3).

During SLS, the average muscle activation of the VL 
and GCM muscles was significantly higher in the patient 
group. The average muscle activation of the GCM during 
the entire gait cycle was also significantly higher in the 
patient group.

In the patient group, muscle activation of the VM, VL, 
and ST generally showed a greater trend compared with 
the control group across different KEM ranges (Fig.  2, 
Table  4). However, statistically significant differences 
were observed only when KEM was under a specific Bw 
× Ht (VM and VL: −1%, −2%, 5%, 6%; ST: −2%, 5%, 6%; 
and GCM: −1%, 0% Bw × Ht).

Discussion
This study showed that there were differences present in 
muscle activity and concomitant gait pattern between 
patients with PFPS and normal control participants. The 
sagittal motion, representing the major movement of the 
knee joint, as indicated by KFA and KEM [31, 32], was 
analyzed during each phase of the gait cycle. This study 
further investigated the relationship between muscle 
activation and KEM by observing changes in four EMG 
channels. A significant difference was observed only 
in the KEM, with no significant differences noted in 
the KFA. Additionally, the differences in EMG activity 
between the two groups were significant only within spe-
cific KEM ranges, reflecting compensatory responses to 
distinct biomechanical demands.

As shown in Fig. 1 and presented in Table 2, the change 
in gait pattern was only significant in the kinetic pattern, 
while no significant difference in the kinematic features 
was found. The average value of the KEM was signifi-
cantly different during WA. WA represents 0 ~ 12% of 
the gait cycle and the main tasks of WA include weight 
bearing, transferring body weight to the limb, and shock 
absorption. During the WA phase, the activity of shock-
absorbing muscles, including the VL, VM, and ST, 
showed an increasing trend. However, compared with the 
control group, these increases were not statistically signif-
icant for the VL and VM, indicating minimal differences 
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in muscle activation during level walking owing to its rel-
atively low kinetic demands. In contrast, the ST showed 
a statistically significant increase in activation in the 
PFPS group during the entire cycle (Table  3), suggest-
ing its role as a compensatory stabilizer in reducing the 
KEM by hyperactivating the ST muscle. Kalytczak et al. 
[33] performed a single leg triple hop test and reported 
increased EMG activity during the test, with no sig-
nificant differences in kinematic analysis. There are also 
reports of reduced KEM during loading response and 
terminal stance of the gait cycle and increased activity in 
the VMO and VL muscles in patients with patellofemoral 
pain compared with healthy control participants [17, 34]. 
These results suggest that the muscle activity of patients 
with PFPS alters to reduce the extension moment of the 
knee joint by increasing muscle activity compared with 
the control group, without changing the major motion 
during the gait.

Figure  2, in addition to Table  4, shows that changes 
in EMG activity are associated with the value of KEM, 
exhibiting distinct patterns across muscles. For the 
VM, VL, and ST muscles, a U-shaped relationship was 
observed, with increased activation at low KEM values 
(−2 to 0% Bw × Ht) and re-engagement at high KEM 
values (5–7% Bw × Ht). This pattern suggests an adap-
tive response aimed at stabilizing the knee joint under 
specific biomechanical demands [35]. In contrast, the 

gastrocnemius muscle displayed a mountain-shaped 
activation pattern, peaking at mid-range KEM values 
(around 0–3% Bw × Ht), reflecting its primary role in 
ankle stabilization and propulsion during mid-stance.

Significant differences in muscle activation between 
the control and PFPS groups were observed primarily 
at extreme KEM values, highlighting the compensatory 
neuromuscular strategies employed by patients with 
PFPS to manage joint loading [36]. Even though the 
pain of PFPS is aggregated during the extensor activ-
ity of the knee joint [37], it is known to not be painful 
during level walking [38]. The observed alterations in 
EMG patterns, combined with changes in kinetic gait 
patterns, indicate that patients with PFPS exert extra 
effort to stabilize the knee joint and reduce the peak 
KEM value, even in the absence of pain [39]. The lack 
of differences in muscle activation at low absolute KEM 
values reflects the minimal neuromuscular demands 
during these phases and the absence of compensatory 
requirements. In contrast, significant differences at 
high KEM values highlight the adaptive responses in 
patients with PFPS to manage higher biomechanical 
loads. While this study suggests a possible role of the 
CNS in regulating these compensatory mechanisms as 
proposed in animal models by Barroso et  al. [21], fur-
ther research is needed to directly assess neural control 
mechanisms in humans with PFPS.

Fig. 1  Kinetic, kinematic, and EMG data. All curves represent the mean values of biomechanical features at the point of the gait cycle. Blue 
represents control; red represents patients. a Knee flexion angle; b knee extension moment; c vastus medilais; d vastus lateralis; e semitendinosus; f 
gastrocnemius. Knee extension moment was normalized using the weight × height of individuals. All four EMG data were normalized by MVC
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Table 2  Values of knee flexion angle and knee extension moment

*p < 0.01

Patient with PFPS  
(n = 31) Mean (SD)

Control group (n = 28) 
Mean (SD)

P-value

Knee flexion angle
(Deg)

Average Total 24.83 (2.94) 25.27 (3.32) 0.59

Weight acceptance 13.46 (3.63) 15.28 (3.71) 0.06

Single limb support 12.58 (3.39) 12.44 (3.64) 0.88

Swing limb advancement 37.09 (3.69) 37.62 (3.52) 0.58

Maximum Total 63.48 (4.91) 65.26 (4.16) 0.14

Weight acceptance 18.07 (4.33) 20.71 (4.73) 0.03

Single limb support 18.51 (4.07) 21.09 (4.59) 0.03

Swing limb advancement 63.48 (4.91) 65.26 (4.16) 0.14

Minimum Total 5.95 (3.68) 4.87 (3.27) 0.24

Weight acceptance 8.44 (3.57) 8.68 (3.38) 0.79

Single limb support 8.86 (3.80) 7.13 (3.67) 0.08

Swing limb advancement 6.80 (4.00) 6.05 (3.64) 0.45

Knee extension moment
(% Bw × Ht)

Average Total 0.29 (0.35) 0.30 (0.28) 0.89

Weight acceptance* 0.99 (0.68) 1.56 (0.62)  < 0.01

Single limb support 0.70 (0.74) 0.57 (0.69) 0.47

Swing limb advancement −0.21 (0.06) −0.24 (0.06) 0.19

Maximum Total* 3.39 (1.04) 4.22 (1.04)  < 0.01

Weight acceptance* 3.15 (1.11) 4.08 (1.03)  < 0.01

Single limb support* 3.37 (1.09) 4.20 (1.05)  < 0.01

Swing limb advancement 0.87 (0.26) 0.83 (0.18) 0.53

Minimum Total −1.52 (0.38) −1.75 (0.44) 0.03

Weight acceptance −1.36 (0.34) −1.34 (0.39) 0.89

Single limb support −0.83 (0.82) −1.28 (0.80) 0.04

Swing limb advancement* −1.29 (0.26) −1.45 (0.18)  < 0.01

Table 3  Muscle activation

* VM vastus medialis, VL vastus lateralis, ST semitendinosus, GCM gastrocnemius
† p < 0.01; ‡p < 0.001

Patients with PFPS 
(n = 31)
Mean (SD)

Control group (n = 28)
Mean (SD)

P-value

VM Average Total 7.76 (3.96) 5.81 (4.30) 0.08

Weight acceptance 14.24 (6.82) 11.99 (10.27) 0.33

Single limb support 9.26 (4.86) 7.07 (5.49) 0.11

Swing limb advancement 4.93 (3.05) 3.25 (2.12) 0.02

VL Average Total 8.92 (4.64) 6.37 (3.24) 0.02

Weight acceptance 16.89 (9.83) 13.31 (7.30) 0.12

Single limb support† 11.29 (5.00) 7.68 (3.79)  < 0.01

Swing limb advancement 5.04 (3.45) 3.56 (2.41) 0.06

ST Average Total‡ 10.65 (7.16) 5.13 (3.16)  < 0.001

Weight acceptance† 20.38 (15.14) 9.86 (6.48)  < 0.01

Single limb support† 10.14 (7.82) 5.32 (3.61)  < 0.01

Swing limb advancement‡ 8.52 (5.77) 3.76 (2.42)  < 0.001

GCM Average Total† 25.89 (8.95) 19.24 (8.81)  < 0.01

Weight acceptance 6.83 (5.79) 5.21 (4.15) 0.23

Single limb support† 42.77 (17.98) 30.52 (14.04)  < 0.01

Swing limb advancement 18.02 (5.68) 14.32 (7.14) 0.03
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These findings reveal significant alterations in muscle 
activation patterns and KEM adjustments in patients 
with PFPS, which may serve as compensatory mecha-
nisms to reduce joint load and alleviate pain [36]. In this 
study, the PFPS group exhibited notably higher average 
activation in the VM, VL, and ST across all gait phases 
compared with the control group. Early increased acti-
vation (at −2 to 0% Bw × Ht) may be a compensatory 
mechanism to preemptively stabilize the knee joint under 
initial load, while the second rise at higher KEM values 
(5–7% Bw × Ht) suggests re-engagement of stabilization 
to control or prevent excessive movement in later phases. 
These findings support the potential therapeutic value of 
neuromuscular reeducation and targeted strengthening 
exercises aimed at optimizing VM, VL, and ST activation 

[36]. By focusing on balanced activation and controlled 
KEM adjustments, such interventions could enhance 
knee stability and reduce excessive joint stress, thereby 
improving functional outcomes for patients with PFPS.

The specific muscle activation patterns observed in 
this study are likely influenced by the pathomechanics 
unique to PFPS. However, patients with knee pain due to 
other causes may demonstrate different patterns depend-
ing on the underlying pathology and the compensatory 
demands placed on the neuromuscular system. Patients 
with knee osteoarthritis often show increased co-con-
traction of quadriceps and hamstring muscles, which is a 
distinct strategy to enhance joint stability owing to com-
promised cartilage and structural integrity [36, 40]. Indi-
viduals with anterior cruciate ligament (ACL) injuries 

Fig. 2  Muscle activation according to the knee extension moment. All points represent the mean values of EMG data in a specific knee extension 
moment value. The knee extension moment value is determined by rounding it to the nearest ones. Blue represents control; red represents 
patients. a Vastus medilais; b vastus lateralis; c semitendinosus; d gastrocnemius
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exhibit altered hamstring activation to compensate for 
ligamentous instability [41]. To better understand the 
generalizability of these findings, future studies should 
compare muscle activation patterns across different knee 
pathologies.

There are limitations to this study. First, the findings 
need to be validated with a larger sample size and better 
consideration of symptom duration variability. Addition-
ally, only four EMG activities were measured, which may 
limit the comprehensiveness of the analysis. Further-
more, there was an age difference between the patient 
and control groups, which, although within the young 
adult range, may have introduced minor variability in the 
results.

Conclusions
The findings indicate that patients with PFPS show 
increased muscle activation as a potential compensa-
tory strategy to reduce knee joint loading during gait. 
These results highlight altered neuromuscular responses 
in PFPS, which could inform targeted therapeutic inter-
ventions to improve functional outcomes in PFPS 
management.
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Table 4  Muscle activation according to the knee extension 
moment (KEM). The average of muscle activation was calculated 
in a specific KEM value range

KEM (% 
Bw × Ht)

Control group 
(n = 28)

Patients with 
PFPS (n = 31)

P-value

Mean (SD) Mean (SD)

VM (% MVC) −3 9.66 (8.17)

−2‡ 13.16 (11.16) 14.47 (7.01)  < 0.001

−1‡ 4.32 (3.2) 11.46 (6.33)  < 0.001

0 3.00 (2.03) 4.76 (2.96) 0.13

1 2.84 (1.6) 4.74 (4.79) 0.23

2 2.27 (1.31) 3.82 (3.42) 0.63

3 2.10 (1.21) 3.53 (2.51) 0.84

4 2.12 (1.34) 4.01 (2.02) 0.42

5‡ 2.52 (2.21) 6.42 (2.59)  < 0.001

6‡ 3.35 (4.02) 9.01 (3.38)  < 0.001

7 4.71 (5.77)

8 6.76 (7.2)

VL (% MVC) −3 10.91 (6.08)

−2‡ 14.32 (7.93) 17.14 (9.87)  < 0.001

−1‡ 4.70 (2.69) 13.92 (6.38)  < 0.001

0 3.45 (2.5) 5.13 (2.92) 0.01

1 3.13 (2.56) 4.13 (4.19) 0.38

2 2.43 (2.29) 3.7 (4.14) 0.68

3 2.34 (2.27) 3.95 (3.96) 0.48

4 2.48 (2.55) 4.88 (3.89) 0.07

5‡ 2.67 (2.36) 7.98 (5.4)  < 0.001

6‡ 3.33 (2.35) 11.38 (7.85)  < 0.001

7 4.73 (2.98)

8 6.97 (3.95)

ST (% MVC) −3 9.59 (5.99)

−2‡ 9.06 (6.5) 20.32 (15.09)  < 0.001

−1 3.96 (2.93) 12.07 (9.82) 0.01

0 2.65 (1.75) 6.38 (4.38) 0.79

1 1.91 (1.17) 6.28 (5.82) 0.77

2 1.96 (1.47) 6.69 (6.14) 0.99

3 2.57 (2.27) 8.20 (6.3) 0.33

4 3.92 (3.41) 10.79 (7.04) 0.02

5‡ 5.35 (4.57) 14.8 (10.24)  < 0.001

6‡ 6.71 (5.13) 17.4 (12.5)  < 0.001

7 8.04 (5.58)

8 8.87 (5.96)

GCM (% MVC) −3 4.44 (4.17)

−2 10.57 (6.86) 7.12 (5.78) 0.06

−1‡ 32.10 (15.05) 31.75 (16.37)  < 0.001

0‡ 43.12 (21.13) 55.29 (20.11)  < 0.001

1 5.40 (3.75) 6.97 (3.44) 0.02

2 4.31 (3.3) 5.31 (3.59) 0.42

3 4.75 (4.07) 5.28 (3.77) 0.45

4 4.80 (4.2) 4.99 (3.8) 0.63

5 4.68 (4.32) 4.82 (3.87) 0.75

6 4.47 (4.39) 4.90 (3.98) 0.70

7 4.26 (4.24)

8 3.97 (3.87)

Table 4  (continued)
The KEM value interval was determined by rounding
* VM vastus medialis, VL vastus lateralis, ST semitendinosus, GCM gastrocnemius
‡ p < 0.001
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